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Cold atom 
interferometer

• A timeline

• Conceptual scheme

Measurements

Acceleration

Gravity

Rotation

Fine structure constant

Casimir force

Dynamic polarizability

Black body radiation

Time standard

Equivalence principle

Gravitational wave
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M. Travagnin, Cold atom interferometry sensors: physics and technologies. 
A scientific background for EU policymaking, 2020, doi:10.2760/315209
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Working 
principle • The interferometer phase

• The atomic motion against the ruler 

• 𝜙1 − 2𝜙2 + 𝜙3
• Sensitive to acceleration

Photon momentum transfer

• Raman transition

• Bragg diffraction

Phase read-out

• Fluorescence

• Absorption image
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J. E. Debs, Ph.D. Thesis, The Australian National University (2012) 
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Cold atom 
interferometer 
Performance

• Current and future accelerometer 
technologies

Accuracy: 6.7 𝑝𝑔 @ 2.6 𝑠
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M. Kasevich, Stanford, 2014 RTO-EN-SET-116(2010)
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Sagnac effect

• Sagnac interferometer is sensitive to rotation
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Pictures: https://www.mezzacotta.net/100proofs/archives/190
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Sagnac effect

• Sagnac interferometer phase is presented [1]

• Ω is the rotation, 𝐴 is the area enclosed by the interferometer. 

• 𝐸 is the particle energy of the interfering photons or atoms

• Comparing the energy of atoms and photons

𝑚
𝑅𝑏
𝑐2

ℏ𝜔
633𝑛𝑚

= 1.2 × 1011

• The scale factor of atom is huge
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1. G. Tackmann et al., Large-area Sagnac atom interferometer with robust phase read out. Comptes Rendus Physique 15, 884-897 (2014).
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An example of 
atom gyroscope

• Current and future gyro technologies

Free-space Cs fountain type: 𝐿~60 𝑐𝑚, 
𝑇~200 𝑚𝑠

Two-photon Raman transition between 
clock state 

Stability 0.00006 𝑑𝑒𝑔/ℎ𝑟, rate 3.75 𝐻𝑧
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D. Savoie et al., Interleaved atom interferometry for
high-sensitivity inertial measurements. Science
Advances 4, eaau7948 (2018).

RTO-EN-SET-116(2010)
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Atom chip

Phys. Rev. Lett. 117, 
203003, 2016 

Portable

Scientific Reports, Vol. 8, 
12300, 2018 

Large scale, 200 m

Scientific Reports, Vol. 8, 
14064, 2018 

Further examples
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What could be further improvement

Typical atom interferometer

• Free space
• Free-falling atoms

• Expanding atom

• Cold atoms

It might be desired

• Waveguide
• Hold atoms

• Ultracold atoms (BEC)
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Longer coherence time in a compact system size

What we expect
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Pros/Cons of using BEC

Advantage

• Colder and denser
• Less dispersive

• Longer measurement time in 
a compact system

• Higher signal contrast

Disadvantage

• System complexity
• Lower duty cycle

• Higher cost

• Less robust

• Less atom number

• Denser
• Interaction effect is 

pronounced
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Pros/Cons of using waveguide

Advantage
• Confinement

• Less dispersive

• Longer measurement time in a 
compact system

• Higher signal contrast

Disadvantage
• System complexity

• Less robust

• Waveguide fluctuation, 
curvature

• Confinement
• Inhomogeneous dephasing
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A waveguide BEC interferometer at LANL

• Waveguide: Loosely focused optical dipole trap

• BEC: 39K |F, mF>=|1, -1>

• Multiple-loop scheme
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MPA-Q, LANL internal (2019)

Overcome the disadvantages and maximize the benefits of waveguide BEC interferometer.
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Experimental goals for waveguide BEC interferometer

Overcome Disadvantages

• Dense atoms
• Interaction effect is 

pronounced

• Confinement effect
• Inhomogeneous dephasing

Tools

• Non-interacting condensate
• Reduce wave packet dispersion

• Reduce collisional loss and 
dephasing

• New pulse scheme
• Multiple-loop atom interferometer

• Increase available coherence time
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Disadvantage1: Interacting BEC

• Gross-Pitaevskii Eq. of the condensate wave function

• Solution: S-wave scattering length is tunable by magnetic field.

• 39K |1,-1>-|1,-1> s-wave scattering length [1]

𝑎𝑠 = −29𝑎0 1 +
56 𝐺

𝐵 − 562.2 𝐺

• Evaporation at 𝑎𝑠 > 300𝑎0 and get the condensate atoms

Two-body collisions characterized 
by the s-wave scattering length

[1] C. D'Errico et al., Feshbach resonances in ultracold39K. New Journal of Physics 9, 223-223 (2007)
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Disadvantage2: Confinement effect

Single-loop

• More inhomogeneous dephasing as 
atoms move farther.

Solution: Multiple-loop

• It sustains longer coherence time

• Deploy dynamic decoupling
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Phase gradient of the wave packet
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39K BEC 
generation

Vacuum chamber

Laser cooling

Laser trapping

Atom transport

Forced evaporation
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Vacuum chamber (top view)
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BEC lifetime > 20 s
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Laser cooling

• High pressure (HP) D2 MOT is 2~3 𝑚𝐾, pushed to the low pressure (LP) 
chamber.

• LP D2+D1 hybrid MOT: ~60 𝜇𝐾, 8 × 1010/𝑐𝑚3

• LP D1 gray molasses: 6 𝜇𝐾, 8 × 1010/𝑐𝑚3

3/15/2021 19

39K

References
1. G. Salomon et al., Gray-molasses cooling of 39 K to a high phase-space density. 
EPL (Europhysics Letters) 104, 63002 (2013).
2. M. Landini et al., Direct evaporative cooling of ${}^{39}$K atoms to Bose-
Einstein condensation. Physical Review A 86, 033421 (2012).
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1550 nm laser trapping

• Magnetic trap (~150 𝐺/𝑐𝑚) holds atoms

• 1550nm Dipole trap (𝑤0 = 35 𝜇𝑚, 𝑇~770 𝜇𝐾) is overlapped.

• The dipole trap captures the atoms
• ~106 atoms, spin polarized to |1, -1>

• 𝑇~15 𝜇𝐾, ~1011/𝑐𝑚3

• The atoms are transferred to the glass cell.
• Spin polarization is maintained by Earth’s  magnetic field

• Translation stage (Newport XML350) moves for 1 s.

• No atom loss, No heating

• Axial sloshing is observed after translation.
• 2𝜋 × 𝜔𝑧 = 36 𝐻𝑧
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Forced evaporation cooling

• Set 𝑎𝑠~200𝑎0 and reduce 1550 nm beam power for 1 s.

• The atoms are transferred to 1064 nm cross dipole +waveguide.
• Dimple effect

• 𝑤0 = 100 𝜇𝑚, 𝑇~500 𝜇𝐾

• Set 𝑎𝑠~0𝑎0 and increase 1064 nm beam power for 0.2 s.
• Adiabatic compression

• Set 𝑎𝑠~400𝑎0 and forced evaporation for 5 s.

• 𝐼 𝑡 = 1 +
𝑡

0.25 𝑠

−1.45

• BEC is formed, 2𝜋 × 77, 100, 12 𝐻𝑧

• Cross dipole power is further down to 0.
• 1D quasi condensate, 2𝜋 × 77, 100, 2.9 𝐻𝑧
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Interaction tuning of the condensate

• Absorption Images after 16 ms of time-of-flight.
• Repulsive interaction expands the wave packet
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Compressional mode

• BEC is formed, 2𝜋 × 77, 100, 12 𝐻𝑧

• Cross dipole power is further down to 0.
• 1D quasi condensate, 2𝜋 × 77, 100, 2.9 𝐻𝑧

• [black, red, blue], 𝑎𝑠 = [−2.5, 0.7, 150]𝑎0

•
𝜔𝑐

𝜔𝑧
= [2.1 2 , 1.8 1 , 1.7 2 ], agrees with theory [1].

3/15/2021 23

[1] E. Haller et al., Realization of an Excited, Strongly Correlated Quantum Gas Phase. Science 325, 1224-1227 (2009).
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Result: Multiple-loop scheme

• Momentum is given by Bragg diffraction

• Small amplitude, many round-trip
• Minimize inhomogeneous dephasing from confinement potential

• Dynamic decoupling of noise: 𝜙𝑙𝑎𝑠𝑒𝑟 = 𝜙𝜋/2 + 2σ𝑖=1
𝑛=𝑒𝑣𝑒𝑛 −1 𝑖𝜙𝜋 − 𝜙𝜋/2,𝜃

• Zero s-wave scattering length
• Reduce collision induced dephasing and loss
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Interferometer fringe

• Coherence time is 900 ms for n=400
• T=1.125 ms

• The s-wave scattering length: 𝑎𝑠 = 1.7 𝑎0

• Only atom loss limits more 𝜋 pulse
• Current 𝜋 pulse efficiency: 99.4 % => 0.994400 = 0.09

• Theory: 0.9992000 = 0.13

• 4.5 s coherence time is expected
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Atom loss: collisional loss + mirror pulse

• One and two-body loss model

•
𝑑𝑁𝑡𝑜𝑡

𝑑𝑛
= −𝑎𝑁𝑡𝑜𝑡

2 − 𝑏𝑁𝑡𝑜𝑡

• The coefficient 𝑏: 𝜋 pulse loss

• The coefficient 𝑎: colliding BEC loss
• The scaling law holds [1]: 𝑎 ∝ 𝑎𝑠

2
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[1] Y. B. Band, M. Trippenbach, J. P. Burke, P. S. Julienne, Elastic Scattering Loss of Atoms from Colliding Bose-Einstein Condensate Wave 
Packets. Physical Review Letters 84, 5462-5465 (2000).



Multiple-loop scheme boosts coherence time

n=2 case: 
𝜋
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• Rapid degradation of fringe contrast
• Confinement potential induced 

inhomogeneous dephasing (blue)

• Mechanical noise of the reference frame 
(red)

T fixed: 
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• Sustained coherence over second
• Minimize the dephasing

• Dynamic decoupling of noise
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Phase sensitive AC atom interferometer: 
Concept proof

• 𝜙𝑙𝑎𝑠𝑒𝑟 = 𝜙𝜋/2 + 2σ𝑖=1
𝑛=𝑒𝑣𝑒𝑛 −1 𝑖𝜙𝜋 − 𝜙𝜋/2,𝜃

• Cancel out DC signal.

• Accumulate a resonant frequency signal, F=1/(4T).

• Dynamic decoupling of mechanical noise.

• A principle of lock-in detection.
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Signal measurement: AC Stark shift

• 1064 nm small beam vertically cross the waveguide.
• Good for high gradient signal measurement.

• The resulting dynamic polarizability from the fit: 𝛼1064 𝑛𝑚 = 620 40 𝑎. 𝑢.
• Shows a good agreement with the reference value: 𝛼1064 𝑛𝑚 = 606 5 𝑎. 𝑢. [1]
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[1] M. S. Safronova, U. I. Safronova, C. W. Clark, Laser cooling and trapping of potassium at magic wavelengths. arXiv:1301.3181,  (2013).



Future perspectives

• Moving waveguide Sagnac interferometer

• Closed-loop waveguide Sagnac interferometer
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Moving 
waveguide

C. Ryu, M. G. Boshier, Integrated 
coherent matter wave circuits. New 
Journal of Physics 17, 092002 (2015).
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